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Anomaly Detection in HEP
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• Anomaly detection (AD) = identify features of the data that are 
inconsistent with a background-only model  

• At the Large Hadron Collider: no recent new physics + many exclusion 
results → develop strong model independent search program 

- Weakly supervised learning in dijet final states (ATLAS) 
- LHC Olympics 2020: cross-experiment/theory “competition” of AD methods  
- Dark Machines anomaly score challenge  

J. Gonski19 May 2021

A Word on Jets

�11

• Jets = sprays of hadronic particles reconstructed with clustering into a cone  
•Higher mass exclusions for new particles + high energy machine = high momentum 
outputs  
- Boosting = collimation of decay byproducts  (multiple decays may overlap & reco as a 

single jet) 
- Substructure: synthesizing correlations between jet constituents to determine particle 

content in “fat” (large radius) jet 
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https://arxiv.org/abs/2005.02983
https://arxiv.org/abs/2101.08320
https://arxiv.org/abs/2105.14027
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• Snowmass 2022: several e+e- colliders (ILC, FCCee, CEPC) are strong 
candidates for the next international accelerator

• How to exploit anomaly detection in an entirely different type of particle 
collision?

- Many crucial differences in hadron vs. e+e- events: initial state knowledge, 
background processes, pileup, detector info

e+e- → WW → , √s=1 TeV ILC  qq̄qq̄

[ref]

pp → dijet, √s=13 TeV LHC  

[ref]

https://www-jlc.kek.jp/~miyamoto/evdisp/html/index.html
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions
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e+e- Dataset 
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• Signal: 700 GeV scalar X  →  2 100 GeV scalars 𝒂𝒂  →  
• Background: Drell-Yan hadronic decays 

• Reconstruct dijet final state with R=1.0 jets built from particle flow objects 

• Generate e+e- collisions at √s = 1 TeV (Madgraph) 
- Pythia showering/hadronization + Delphes detector simulation (using general ILC card)  
- Emulate training scenario with “full dataset” of ~6.5 ab-1 
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Figure 1: Feynman diagrams of the background (a) and signal (b) processes considered.

3 Simulated Samples & Processing

We consider e+e� collisions at a nominal centre-of-mass (CoM) energy of 1 TeV that pro-
duce final states with jets and a photon from initial-state-radiation (ISR). The signal process
studied is the production of a BSM heavy scalar X that decays into a pair of scalars a, each
decaying to two b-quarks, in association with a ISR photon: e+e� ! X ! aa ! bb̄bb̄�. Two
sets of values of the invariant masses of particles X and a are examined: mX ,ma = 350, 40 GeV
and 700, 100 GeV. The background originates from di-jet production in association with a
ISR photon, with a cross-section that is dominated by the Drell-Yan �⇤/Z production and
extends to close to the nominal 1 TeV CoM. Feynman diagrams of the signal and background
processes are shown in Figure 1.

The generation of background and signal events is done by MadGraph5_aMC@NLO

X.X.X [4] with parton showering and hadronization performed by Pythia8 [5]. A minimum
ET threshold of 10 GeV is placed on the photon, with a pseudo-rapidity that extends to
±5.

The detector simulation is parameterized with Delphes X.X, using a card for a generic
ILC detector []. A particle flow algorithm is used to combine tracking and calorimeter
information and define the final reconstructed objects. Photons are built from energy
deposits in the electromagnetic calorimeter that are not matched to any track, using the
central and forward calorimeter systems with pseudo-rapidity coverages of |⌘| < 3.0 and
3.0 < |⌘| < 4.0, respectively. Jets are built from particle flow objects (except isolated muons,
electrons and photons) measured in the tracker (with an acceptance of up to |⌘| < 3.0,
electromagnetic and hadronic calorimeters (central system up to 2.8 and forward system
up to 3.8 in absolute pseudo-rapidity). The jet clustering is performed with the anti-kt [6]
algorithm with a radius R = 1.0 implemented in FastJet [7].

Events are selected for analysis if they contain at least two jets with a minimum pT of
X GeV. An effective CoM energy can be calculated for all events based on the The effective
CoM energy

p
ŝ is shown in Figure 2 for all generated samples, calculated with truth-level

quantities. Distributions of the photon transverse energy and pseudo-rapidity are shown
on Figure 4 for the background and signal processes considered.

The unpolarized cross-section for the background process is of the order of 1 pb, cor-
responding to approximately X events above the Z peak. This amount of statistics would
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https://github.com/iLCSoft/ILCDelphes
https://arxiv.org/abs/1506.07830
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Radiative Return in e+e-

6

700 GeV X 
~ 300 GeV ɣ

350 GeV X 
~ 650 GeV ɣ

• Require events to have at least 1 photon with E > 10 GeV from initial state 
radiation (ISR) 

- ISR photon can have any energy 
- Initial CoM energy in e+e- is exactly known  

•  Can use to “scan” new particle masses, à la dijet invariant mass bump 
hunts at the LHC 
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Training Setup
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• Using Particle Flow Networks 
implemented in EnergyFlow framework: 
model an event as an unordered, 
variable-length set of jets 

- Up to 15 jets per event  
- 10 features per jet: 4 vector (pT, η, ɸ, m), 

b-tagging bit, 5 N-subjettiness variables 𝛕 
➡150 input features per event 

• Normalization: normalize jets to average 
pT/η/ɸ in event — critical to not induce 
√s sculpting 

• Ensembling: train 50 models per setup 
with random signal injections, quantile 
scale outputs, and average

Jet multiplicity 

Leading jet mass

https://energyflow.network/
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• Select signal and background in ±25 GeV windows in √s around the resonance 
mass: SR = [675, 725) 

• Train with a variety of signal contaminations: σ=0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. 
all S vs. all B) 

➡ Significance Improvement Characteristic (SIC): can enhance a 0.3% signal 
contamination from 0.5σ to ~1.0σ

SR

Semi-supervised (Data vs. Simulation)
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• Select signal and background in ±25 GeV windows in √s around the resonance 
mass: SR = [675, 725) 

• Train with a variety of signal contaminations: σ=0.0, 0.5, 1.0, 2.0, 3.0, 5.0, and ∞ (eg. 
all S vs. all B) 

➡ Significance Improvement Characteristic (SIC): can enhance a 0.6% signal 
contamination from 1.0σ to ~10.0σ

SR SIC: X=700 GeV vs. bkg

Semi-supervised (Data vs. Simulation)

Figure 5: Semi-supervised training results in the form of ROC (left) and SIC (right) curves
for two signals, mX = 350 GeV (top) and mX = 700 GeV (bottom) vs. background.

the 15 input variables used in the event-level training and their distributions can be found
in Appendix B.

Results are shown in Figure 7 for the weakly supervised training scenario. The inability
of the DNN to distinguish signal from background, except in the 100% signal contamina-
tion scenario, indicates that the event-level variables are suboptimal for the signal of this
study. Comparison to Figure 6, which gives the analogous result for the PFN training,
demonstrates the benefit of using high-dimensional input representations for the task of
anomaly detection. Comparable signal sensitivity is delivered by a fully supervised signal
vs. background training on event-level variables, and a PFN weakly supervised training
with only 3.1% signal contamination.

5 Future Detector Considerations

To extrapolate these results to a search in real collision data, the same method is applied
using regions defined with a measured

p
ŝ instead of one computed with truth-level quan-

tities. Two different methods for measuring the total available energy are considered. One
assumes that the ISR photon is captured by the detector, and therefore uses the measure-
ment of its energy subtracted from the incoming electron-positron

p
ŝ as a proxy for the

amount of energy available in the collision. This is referred to as the photon-measuredp
ŝ. The second is the hadron-measured

p
ŝ, which covers the scenario where the photon

– 9 –
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Data-Driven/Weakly Supervised (CWoLa)
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Training Strategies

Topic Modeling/ 
Clustering

Classification 
W/O Labels

Likelihood 
Discrimination

p(x |x ∈ A) p(x |x ∈ B)

Separate out Sample 1  
from Sample 2 by  
hidden signal 

Split a histogram 
into multiple distributions 
by looking for separate 
regions

17

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels 
(CWoLa), events in a signal region are 

labeled “signal” and events in a sideband 
are labeled “background”.  These labels 
are “noisy” but a classifier trained with 

them can detect the presence of a signal.

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
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f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Features for 
training CWoLa 

classifier + be careful to not pay a big trails factor

Solutions: Weakly-supervised
• NN trained in signal region vs. sideband is sensitive to signal 
vs. background characteristics  

- SR and SB defined in windows of mjj, each region has different 
fraction of signal

1708.02949,  
1805.02664 

eg, 2 jet masses

https://lhco2020.github.io/homepage/
https://arxiv.org/pdf/1708.02949.pdf
https://arxiv.org/abs/1805.02664
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• NN trained in signal region vs. sideband is sensitive to signal 
vs. background characteristics  

- SR and SB defined in windows of mjj, each region has different 
fraction of signal
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Features for 
training CWoLa 

classifier + be careful to not pay a big trails factor

Solutions: Weakly-supervised

1708.02949,  
1805.02664 

√s

In our case… 

150 per event!

Data-Driven/Weakly Supervised (CWoLa)

https://lhco2020.github.io/homepage/
https://arxiv.org/pdf/1708.02949.pdf
https://arxiv.org/abs/1805.02664
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Monitoring √s Correlation 
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• Shift to CWoLa training means signal and background are in different √s bins  
  → Need to validate extrapolation across √s & ensure little/no correlations 
• CWoLa-trained classifier tested on background in SB vs. background in SR 
has learned nothing to discriminate on √s alone 

ROC: Bkg in SB vs. Bkg in SR

Figure 4: CWoLa-trained ROC curves for background in the sideband vs. background in
the signal region, for the mX = 350 GeV signal region on the left and the mX = 700 GeV
signal region on the right.

to 10�5) learning rates was found to be suboptimal. Adagrad [98] and RMSProp [99]
optimizers were also studied, with no significant impact on the performance. The PFN was
trained for 30 epochs with a batch size of 100. A longer training time of 100 epochs was
also considered and did not strongly affect the final performance.

In the weakly supervised scenario where training utilizes events from different bins ofp
ŝ, care must be taken to ensure that the network output is agnostic to the

p
ŝ of the

events. Therefore, a per-event normalization procedure is implemented to mitigate thep
ŝ correlation. Each jet’s ⌘ and � is centered on the average value for all jets in the event,

and its pT is scaled by the sum of jet transverse momentum in the event. The efficacy
of the normalization procedure is verified by training the network to identify background
events in the signal region from background events in the sideband. Since these events
should only vary in their

p
ŝ values, the normalization procedure can be deemed functional

if the classifier is unable to discern these two classes of background events. Figure 4 shows
the result of this training, confirming that the chosen normalization is sufficiently able to
remove significant correlations of learned information with

p
ŝ.

Considerable variance in performance was observed across models with identical train-
ing scenarios. An ensemble procedure was developed to mitigate the effect of these fluctua-
tions. Each training result presented here represents the average of 50 trained models, each
with a random signal injection. Models are combined by quantile scaling the predicted val-
ues on the test set and averaging the results for all 50 models. The results should therefore
be interpreted as the expected/average sensitivity.

4 Results

The results of the training are displayed in two forms. The first is the receiver operating
characteristic curve (ROC), which shows background rejection as a function of the signal
efficiency, and demonstrates the discriminating power of the output net score. Additionally,
the significance improvement characteristic (SIC) is provided, which shows the signal sen-
sitivity as a function of signal efficiency. The SIC can be used as a proxy of how the output

– 7 –
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• SR = [675, 725); sideband in ±50 GeV windows around SR= [625,675) U 
[725,775) 

➡ Little degradation in performance from removing signal hypothesis: 1.0σ 
excess enhanced to ~3.0σ 

-  Other contaminations have even smaller discrepancies

Weakly Supervised Results

13

SR

SBSB



J. Gonski1 September 2021 14

SR

SBSB

SIC: X=700 GeV vs. bkg

Figure 6: Weakly supervised training results in the form of ROC (left) and SIC (right)
curves for two signals, mX = 350 GeV (top) and mX = 700 GeV (bottom) vs. background.

is lost and the collision CoM must be obtained through measurements of the final-state
hadrons. Note that the highest pT photon is always used for these calculations. In the
photon-measured case, if the true ISR photon is out of acceptance, the predicted

p
ŝ will be

significantly different from the true one. In the hadron-measured case, the selected photon
is excluded from the calculation of

p
ŝ.

Figure 8 shows distributions of these two
p
ŝ measurements for the background and both

signal hypotheses. The incorporation of detector information gives each resonance a non-
negligible width due to smearing introduced by detector resolution. As a result, the signal-
to-noise in the signal region is lower. As seen in Table 2, this width can also create some
signal contamination in the sideband. Both of these effects make the discrimination task
more challenging. In the photon-measured case, the signal and Z peaks are approximately
symmetric, with the width dominated by the photon energy resolution. The high-

p
ŝ tail in

the 750 GeV case is the result of events were the true ISR photon is out of acceptance and a
random photon (the next highest pT one) is used to compute

p
ŝ. In the hadron-measured

case, the signal peaks are asymmetric because there are both resolution and acceptance
effects playing a role. The Z peak is sharper for the hadron-measured case compared with
the photon-measured case because the absolute enery resolution is better at low pT : for the
hadron-measured case, all of the particles are . mZ while for the photon-measured case,
the photon energy is nearly

p
s.

Performance of the method can be found in Figures 9 and 10, for the photon-measured
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Figure 7: Weakly supervised training results using event-level input variables, in the form
of ROC (left) and SIC (right) curves for mX = 350 GeV (top) and mX = 700 GeV (bottom).

Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

and hadron-measured
p
ŝ, respectively. Although the sensitivity is generally diminished by

detector effects, there is still strong enhancement for a variety of signal injections, represent-
ing potential for this method in real collision data. Future innovations on hardware (e.g.
increased acceptance) and software (e.g. combining photon- and hadron-measurements)
may be able to close any remaining gaps between the truth

p
ŝ and the reconstructed

version(s).
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Experimental Outlook
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• Detector features such as mass resolution and forward acceptance 
have strong impact on radiative return AD analyses  

• Investigating different √s reconstruction measures to understand 
dependency and inform e+e- detector design 

  

Measured √s, photon captured Measured √s, photon lost

Figure 7: Weakly supervised training results using event-level input variables, in the form
of ROC (left) and SIC (right) curves for mX = 350 GeV (top) and mX = 700 GeV (bottom).

Figure 8: Distributions of the measured collision
p
ŝ when the outgoing photon is captured

and subtracted from the initial collision energy (left), and computed using only the final
state hadrons in the event (right)

and hadron-measured
p
ŝ, respectively. Although the sensitivity is generally diminished by

detector effects, there is still strong enhancement for a variety of signal injections, represent-
ing potential for this method in real collision data. Future innovations on hardware (e.g.
increased acceptance) and software (e.g. combining photon- and hadron-measurements)
may be able to close any remaining gaps between the truth

p
ŝ and the reconstructed

version(s).

– 11 –

https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
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Conclusions
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• Successful application of anomaly detection to a novel e+e- collision 
dataset 

• Strong performance from high dimensional Particle Flow Network 
training inputs in labeled data vs. simulation classification 

• Shift to data-driven training via CWoLa method shows little 
degradation, and enhanced sensitivity to a generic new physics signal 
with no signal prior  

• On the arXiv as of this morning! arXiv:2108.13451
- Comparison of performance in various measures of √s 
- Sensitivity to lower mass X resonance (350 GeV)  
- Comparison to sensitivity from e+e- event-level variables 

  

https://arxiv.org/abs/2108.13451
https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
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Backup
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Event Level Variable Results
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• Training features: 15 per event  
- Masses: leading & subleading large-R jet, total jet mass 
- Transverse momenta: leading & subleading large-R jet, leading photon, j1 pT 

/ ɣ1 pT,  reconstructed X, X pT / ɣ1 pT 
- Multiplicities: # particle, # jets 
- Aplanarity, sphericity, transverse sphericity  
- ln(y23), calculated with all jets in the event 

SICROC

https://arxiv.org/pdf/1811.00588.pdf
https://arxiv.org/pdf/1206.2135.pdf
https://www.sciencedirect.com/science/article/pii/S0370157397000458
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Training Result ROC Curves
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CWoLa TrainingS vs. B Training
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Neural Net Setup
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• Train over 50k events:  
- 25k background only  
- 25k with signal contamination of fixed percent  
- Test set = 10% of training (50% signal, 50% background) 

• 30 epochs, batch size 100 
• Adam optimizer with initial learning rate 0.0001 
• Architecture: dense sizes (100, 100), Phi/F sizes (20, 20, 20)

NN Output Score 
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Leading Jet Training Inputs
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Subleading Jet Training Inputs
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A Word on Jets
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• Jets = sprays of hadronic particles reconstructed with clustering algorithms into 
a cone  

• Higher mass exclusions for new particles + high energy collisions = high 
momentum outputs  

- Constituents: individual hadrons in jet  
- Boosting: collimation of constituents due to high momentum parent 
- Substructure: synthesizing correlations between jet constituents to determine particle 

content in large radius jet 

2-prong 3-prongNo 
substructure

Single q/g H→bbLarge-radius jetSmall-radius jets t→W(qq)b


